



roh-stoff-geschichten

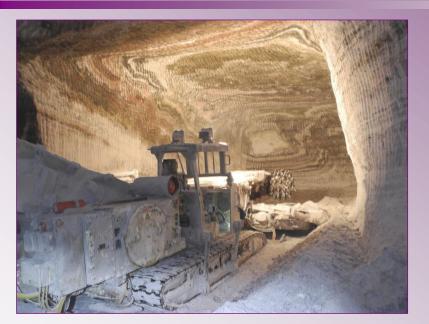
Ein Seminar über Bergbau in Bolivien und Deutschland

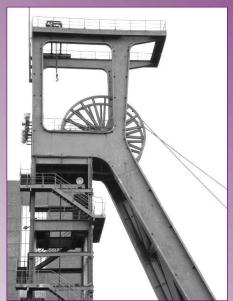
Der Lithium-Boom

Basis der weltweiten Elektromobilität und der bolivianischen Industrialisierung?

Dr. Heiner Marx | K-UTEC AG Salt Technologies

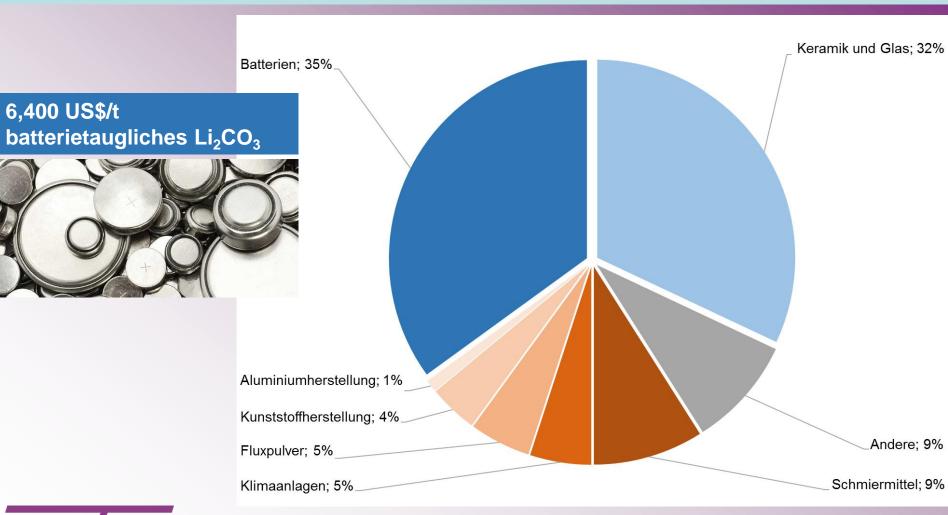
20. Februar 2016 | Goslar, St. Jakobushaus


Content


- K-UTEC AG Salt Technologies
- Lithium im Überblick
- Lithium in Bolivien
- Lithium in Batterien
- Lithium im Automobilbau
- Lithium als Herausforderung

K-UTEC AG Salt Technologies

60 Years Experience In Mineral Salt Industry


K-UTEC AG Salt Technologies

Australia K-UTEC AG weltweit Argentina Austria Bolivia Brazil Chile China **Egypt Eritrea Ethiopia** Ghana India Iran Laos Mexico Peru Russia **Thailand** SOUTHERN OCEAN **Tunisia United Kingdom** Antarotica' USA e.g.

Verwendung von Lithiumverbindungen

Ressourcen, Reserven, Produktion weltweit; Stand 2015

Ressourcen	Reserven	Produktion
41 Mio. t Li	14 Mio. t Li	32.500 t Li

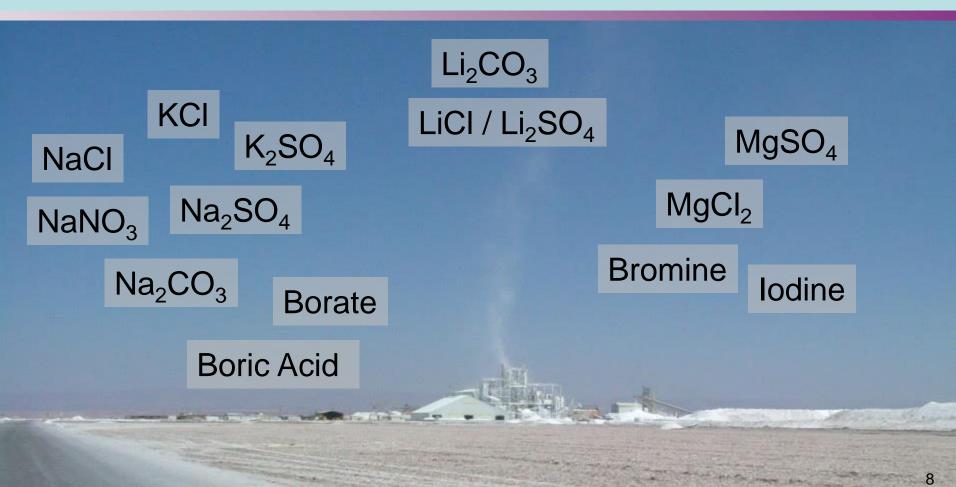
ca. 2/3 der geschätzen Ressourcen befinden sich in Südamerika.

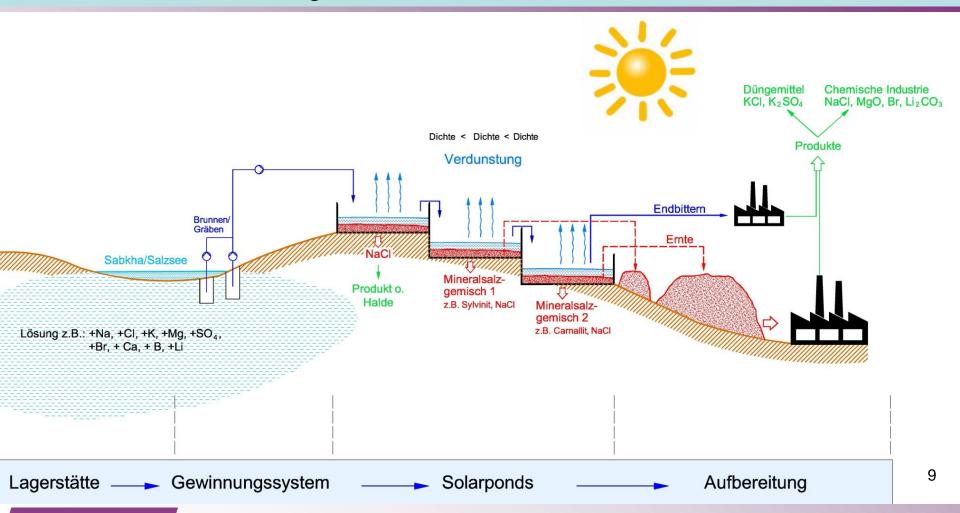
Australien: 13.400 t Li
Chile: 11.700 t Li
Argentinien: 3.800 t Li
China: 2.200 t Li

Rohstoffbasis

Primäre Lagerstätten: Pegmatite, Glimmer, Tone

Sekundäre Lagerstätten: Natursolen aus Salzseen




Potentielle Produkte aus Salzseen

Gewinnung von Lithium und anderen Wertstoffen aus Salzseen

Salar der Uyuni

Lage: SW-Bolivien, Altiplano

Fläche: 10.582 km²

Höhe: 3.653 m N.N.

Mit geschätzten 9 Mio. t Lithium die größte Li-Ressource weltweit

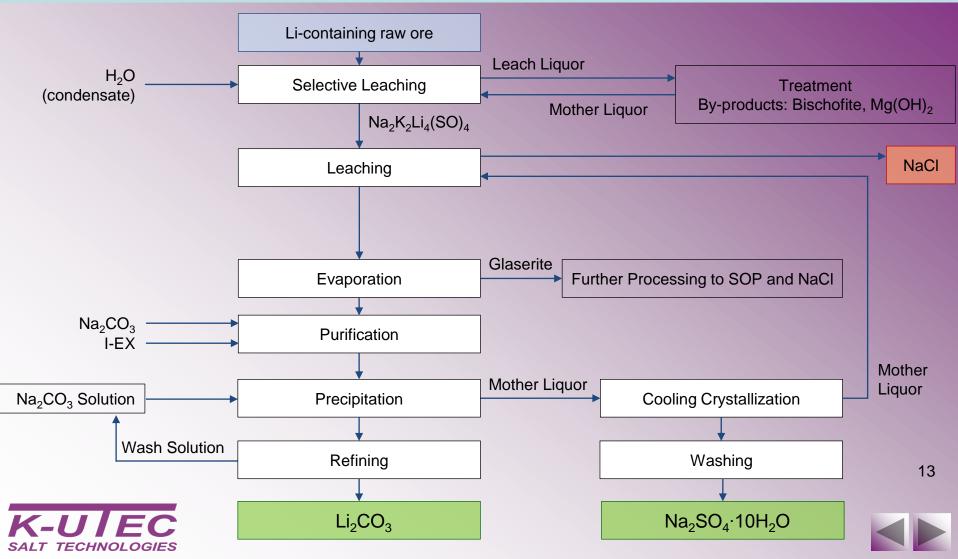
Industrialisierung des Salars de Uyuni

AKTUELL: traditionelle Gewinnung von 25.000 t/a NaCl durch Salineros

ZIEL: Aufbau einer eigenen Mineralsalzindustrie in Bolivien

Produkt	Anlagenkapazität	Projektstatus
KCI	700.000 t/a	in Bauphase seit 2015
Li ₂ CO ₃	30.000 t/a	in Planungsphase; Baubeginn für 2018 geplant

Planung der Li₂CO₃-Anlage durch K-UTEC AG



Vertragsunterzeichnung 14.08.2015 | Salar de Uyuni

Prozessroute zur Gewinnung von batterietauglichem Li₂CO₃

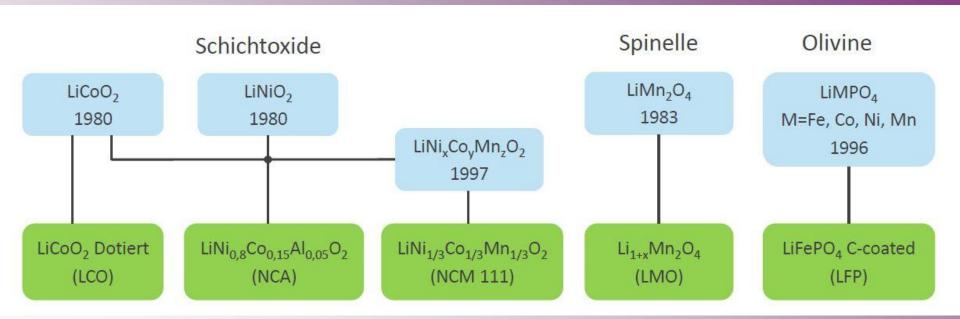
Demonstrationsanlage zur Herstellung von batterietauglichem Li₂CO₃

Technikum K-UTEC AG Salt Technologies

Zukunftsvision

Herstellung von: 30.000 t/a Li₂CO₃ in Batteriequalität

Weitere Ziele: Herstellung einer eigenen Elektrobatterie


Herstellung eines eigenen Elektromobils

Entwicklung und Herstellung geeigneter Kathodenmaterialien

Johnson Matthey Viele Zellhersteller nutzen Mischungen verschiedener Kathodenmaterialien.

JM 🛠 Johnson Matthey

Entwicklung und Herstellung geeigneter Kathodenmaterialien

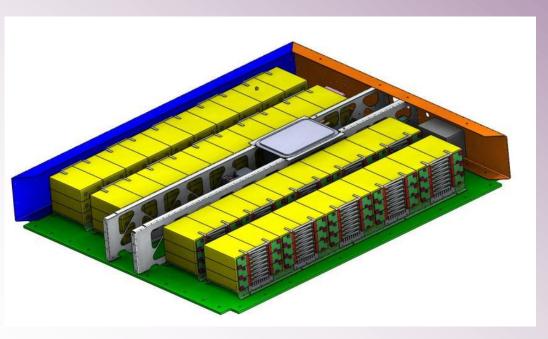
Eigenschaften	LCO	NCA	NCM	LMO	LFP
Spezifische Energie Material (Wh/kg)	590	680	730	440	550
Spezifische Energie Zelle (Wh/kg)*	Gut	140	145-170	110	100-110
Spezifische Leistung	moderat	Gut	Gut	Sehr gut	Sehr gut
Leistung bei niedrigem SOC *)	moderat	moderat	moderat	moderat	Gut
Zyklenfestigkeit	schlecht	moderat	gut	gut	Sehr gut
Kalendarische Lebensdauer	gut	Sehr gut	gut	schlecht	gut
Sicherheit	Sehr schlecht	schlecht	moderat	gut	Sehr gut

^{*)} SOC: State of Charge

JM 🛠 Johnson Matthey

Brandt, K. et al.: Aktuelle Kathodenmaterialien und Fertigungsverfahren. Dresden Battery Days 2015. Präsentation. Johnson Matthey Battery Materials GmbH; 2015

Entwicklung und Herstellung geeigneter Kathodenmaterialien


Herstellung von Lithium-Ionen-Batterien

Elektrodenproduktion

Zellenbau

Modulzusammenbau

Qualitätskontrolle

Medium (Pilot Plant) (2000 EV's/a)	Large (Giga Fab) (100.000 EV's)
50 MWh	2,5 GWh (economy of scale)
5000 m ² 10.000 m ² (brutto)	15.000 m ² 35.000 m ² (brutto)
50 employees	450 employees
9 month engineering 15 month delivery	12 month engineering 18 month delivery

BOmovil: Bolivian - German Electric Car

BOmovil: Bolivian – German Electric Car

Technische Daten

Length: 4.134 mm

Width: 1.864 mm

Height: 1.650 mm

Weight: ca. 1.440 kg

Payload: 2 seats, 500 kg

Drive: 2 wheel motor

Power: 32 kW

Torque: 1.040 Nm

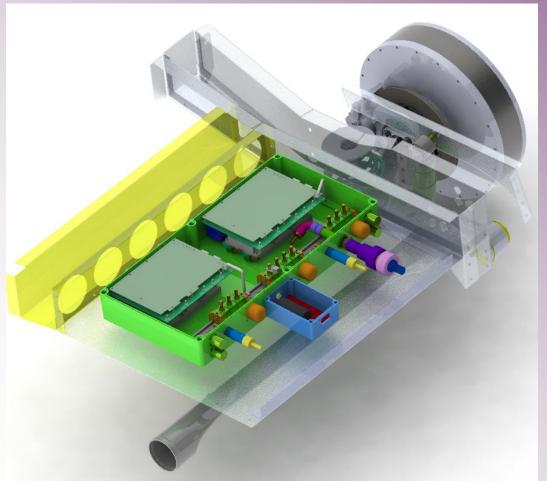
Power Battery: LiFeYPO4

Capacity: 31,6 kWh

Voltage: 400 V

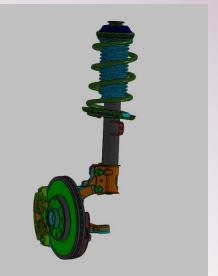
Charger: 220 VAC/16A

Range: ca. 200 km


Top Speed: ca. 120 km/h

Lithium-Ionen-Batterien im BOmovil

Radnarbenmotor mit hohem Wirkungsgrad



Lithium-Ionen-Batterien im BOmovil

Zur Verkürzung der Entwicklungszeit Einsatz von Serienteilen aus dem Opel Zafira.

Lithium als Herausforderung

Bedarf an qualifizierten Fachkräften

Von der Natursole bis zum BOmovil: ca. 5.000 bis 8.000 Arbeitskräfte

Obere Führungsebene: Ingenieure für chemische Verfahrenstechnik,

Maschinen-, Automobil- und Anlagenbau

Versorgungs- und Elektrotechnik, Mess- und Regeltechnik

Chemiker, Betriebswirte, Kaufleute

Mittlere Führungsebene: Chemietechniker, Chemikanten

Laboranten

Maschinenbau- und Anlagenbautechniker

Mechatroniker

Mess-, Regel- und Elektrotechniker

Kraftfahrzeugtechniker

Lithium als Herausforderung

Duales Ausbildungsprogramm

I. Bolivien: Rekrutierung von Arbeitskräften

II. Deutschland: Theoretische und praktische Ausbildung

im Labor-, Technikums- und Industriemaßstab

III. Bolivien: Fortsetzung der Ausbildung in den Produktionsanlagen

Gespräch mit dem bolivianischen Bergbauminister César Navarro Berlin; November 2015

Lithium als Herausforderung

Beispiel SOP-Anlage Indien

Schulung von Fachkräften für den Betrieb einer bei K-UTEC AG

Vielen Dank

